17- GONESSA, J., MBAPTE, R., F. AND NANA, C., Complex Interpolation Between |
Two Mixed Norm Bergman Spaces in Tube Domains Over Homogeneous Cones, |
Complex Analysis and Operator Theory (2023) |
16- Garrigós G. and C. Nana, 2020. Hilbert-type inequalities in homogeneous cones, Rend. Lincei Mat. Appl. 31 (2020), 815-838. |
15-Bekolle D., J. Gonessa and C. Nana, 2020. Atomic decomposition and interpolation via the complex method for mixed norm Bergman spaces on tube domains over symmetric cones, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XXI (2020), 801-826. |
14-Bekolle D., J. Gonessa and C. Nana, 2019. Lebesgue mixed norm estimates for Bergman projectors: from tube domains over homogeneous cones to homogeneous Siegel domains of type II, Matematische Annalen (2019) 374:395-427. |
13-Bekolle D., J. Gonessa and C. Nana, 2018. Begman-Lorentz spaces on tube domains over symmetric cones, New York J. Math. 24 (2018) 902-928. |
12-Nana C. and B. F. Sehba, 2018. Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones, St. Petersburg Math. J. Tom 30 (2018), No 4. |
11-Nana C. and B. F. Sehba, 2018. Off-diagonal estimates of some Bergman-type operators of tube domains over symmetric cones, Positivity (2018), 22: 507-531. DOI: 10.1007/s11117-017-0525-6. |
10-Bonami A. and C. Nana, 2015. Some questions related to the Bergman projection in Symmetric domains, Adv. Pure Appl. Math. 6, No. 4, 191-197 (2015). |
9-Nana C. and B. F. Sehba, 2015. Carleson Embeddings and two operators on Bergman spaces of tube domains over symmetric cones. Integr. Equ. Oper. Theory 83 (2015), 151-178. |
8-Békollé D., H. Ishi and C. Nana, 2014. Korányi’s Lemma for Homogeneous Siegel Domains of type II. Applications and extended results. Bull. Aust. Math. Soc. 90 (2014), 77–89. DOI: 10.1017/S0004972714000033. |
7-Bonami A., G. Garrigós and C. Nana, 2014. |
Estimates for Bergman projections in bounded symmetric domains of tube type. J Geom Anal (2014) 24:1737–1769. DO:I 10.1007/s12220-013-9393-x. |
|
6-Nana C., 2013. -Boundedness of Bergman projections in Homogeneous Siegel domains of type II, Journal of Fourier Analysis and Applications. Vol. 19, Issue 5, (2013), 997-1019.DOI: 10.1007/s00041-013-9280-7. |
|
5-Nana C. and B. Trojan 2011. -Boundedness of the Bergman Projection in Tube Domains over Homogeneous Cones, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 Vol. X (2011), 477-511. |
|
4-Nana C. 2011.-Estimates of the Bergman Projection in the Lie ball of C^n, Journal of Function Spaces and Applications. Vol. 9 no 2 (2011), 109-128. |
|
|
3-Békollé D. and C. Nana 2007. -Boundedness of the Bergman Projection in the Tube Domain over Vinberg’s Cone, Journal of Lie Theory, 17 (2007), 115-144. |
|
2-Békollé D., A Bonami, G. Garrigós, C. Nana, M.M. Peloso and F Ricci. 2004. Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5, (2004), 01-78. |
1-Békollé D., J. Gonessa and C. Nana 2003. Complex Interpolation between two Bergman Spaces in Tube Domains over Symmetric Cones, C.R.Acad.Sci. Paris, Ser. I 337 (2003) 13-18. |